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Abstract

Synthesis of cationic aluminum complexes from the reactions of Lewis bases with Me2AlI is reported. The reactions of two
molar equivalents of (S)-(− )-1-phenylethylamine, (R)-(− )-pantolactone (PL�H), or (S)-(− )-ethyl lactate (EL�H) with Me2AlI
(1), generated in situ from the reaction of Me3Al with one molar equivalent of I2 in toluene at room temperature, afford white
crystalline solids [Me2Al((S)-NH2(Ph)C(H)CH3)2]+I− (2), [(PL)2Al]+I− (3) or [(EL)2Al]+I− (4), respectively. However, Me3Al
reacts with one molar equivalent of PL�H producing [(Me2Al(m-PL))2 (5). The reaction of Me2AlI with 2,2%-ethylidene-bis-(4,6-di-
tert-butylphenol) (EDBP�H2) yields [Al(EDBP)I(Et2O)] (6) which further reacts with one molar equivalent or two molar
equivalents of OPPh3 giving a neutral complex [Al(EDBP)(OPPh3)I] (7) or a cationic complex [Al(EDBP)(OPPh3)2]+I− (8).
However, the cationic aluminum derivative [Al(EDBP)(HMPA)2]+I− (9) is prepared from the reaction of 6 with excess of HMPA.
Crystal structures of 2, 5, and 8 determined by X-ray diffraction method are also presented. © 2000 Elsevier Science S.A. All
rights reserved.
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1. Introduction

Cationic aluminum complexes are of great interest
because of their potential use as living polymerization
catalysts [1] as well as their role in the Lewis acid
promoted Diels–Alder reactions [2]. Although many
cationic aluminum complexes have been reported; how-
ever, four-coordinated aluminum cations are relatively
rare but are still remain attractive as these complexes are
not completely coordinated saturate and are electron
deficient [3]. Recently Atwood and Jegier have demon-
strated that the formation of aluminum cations is af-
fected by the nature of halogen in Me2AlX [4]. In which
he describes that Me2AlBr reacts with excess tert-butyl
amines resulting in a cationic aluminum complex
[(tBuNH2)2AlMe2]+Br− formation, whereas, Me2AlCl
reacts with tert-butyl amines leading only to a neutral
adduct [(tBuNH2)Al(Cl)Me2]. Recently, we have been

directed toward the preparation and use of aluminum
derivatives as Lewis acid for the catalysis of Diels–
Alder reactions and ring-opening polymerization [5].
Our interest in cationic aluminum chemistry has led us
to investigate a feasible way for the preparation of a
variety of cationic aluminum complexes. Me2AlI is
chosen as a starting material because of the weak Al�I
bond, therefore, it is easy to break the Al�I bond using
Lewis bases. In this paper, we report the preparation
and characterization of several four-coordinated
cationic aluminum complexes. The first examples that
cationic aluminum complexes are stabilized by lactate or
lactonate ligand and the formation of supramolecular
structure via N�H···I hydrogen bonds will be presented.

2. Experimental

2.1. General

All manipulations were carried out under a dry nitro-
gen atmosphere. Solvents were dried by refluxing at
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least 24 h over sodium–benzophenone (toluene, hex-
ane, diethyl ether, tetrahydrofuran) or phosphorus pen-
taoxide (CH2Cl2) and freshly distilled prior to use.
Deuterated solvents were dried over molecular sieves.
AlMe3 (2.0 M in toluene), (S)-(− )-1-phenylethylamine,
(R)-(− )-pantolactone, (S)-(− )-ethyl lactate, 2,2%-
ethylidene-bis-(4,6-di-tert-butylphenol), iodine, tri-
phenylphosphine oxide, hexamethylphosphinoamide
were purchased and used without further purification.
Melting points were determined with a Buchi 535 digi-
tal melting point apparatus. 1H- and 13C-NMR spectra
were recorded on a Varian VXR-300 (300 MHz) or a
Mercury-400 (400 MHz) spectrometer with chemical
shifts given in ppm from the internal TMS. Micro-
analyses were performed using a Heraeus CHN-O-
RAPID instrument. Infrared spectra were obtained
from a Brucker Equinox 55 spectrometer.

2.2. Preparation of [Me2Al((S)�NH2PhCH-
(CH3))2]+I− (2)

To an ice cold solution (0°C) of iodine (0.52 g, 2.0
mmol) in toluene (20 ml), an AlMe3 (1.0 ml, 2.0 M in
toluene, 2.0 mmol) solution was added slowly. The
solution changes color from purple to colorless in 20
min, followed by the addition of (S)-(−)-1-phenylethyl-
amine (0.52 ml, 4.0 mmol). The resulting mixture was
stirred for 2 h, during which a white precipitate formed
and then was dried in vacuo. The residue was extracted
with 30 ml of CH2Cl2 and recrystallized from 3:1
hexane–CH2Cl2. Colorless crystals were obtained after
24 h. Yield: 0.81 g (95%). Anal. Calc. for C18H28AlIN2:
C, 50.71; H, 6.62; N, 6.57. Found: C, 50.53; H, 6.65; N,
6.65%. 1H-NMR (CDCl3, ppm): d 7.41–7.30 (m, 10H,
Ph); 5.14 (br, 4H, NH2); 4.15 (q, 2H, CH(CH3), J=6.8
Hz); 1.60 (d, 6H, CH(CH3), J=6.8 Hz); −1.05
(AlCH3). 13C-NMR (CDCl3, ppm): d 139.94, 129.05,
128.68, 126.82 (Ph); 52.72 (CH(CH3)); 24.34
(CH(CH3)); −10.43 (AlCH3).

2.3. Preparation of [((R)-pantolactonato)2Al]+I− (3)

To an ice cold solution (0°C) of iodine (0.52 g, 2.0
mmol) in CH2Cl2 (20 ml), AlMe3 (1.0 ml, 2.0 mmol)
was added slowly. After the mixture was stirred for 30
min, (R)-(− )-pantolactone (0.52 g, 4.0 mmol) was
added and the resulting mixture was stirred for 3 h. The
volatile materials were removed in vacuo and the
residue was extracted with 20 ml of CH2Cl2. Colorless
crystalline solids were obtained 24 h after the addition
of hexane (40 ml). Yield: 0.65 g (79%). Anal. Calc. for
C12H18O6AlI: C, 34.97; H, 4.40. Found: C, 35.41; H,
4.51%. 1H-NMR (CDCl3, ppm): d 4.11 (s, 2H), 4.04 (d,
2H, CH2, J=8.8 Hz), 3.95 (d, 2H, CH2, J=8.8 Hz),
1.25 (s, 6H, CH3), 1.09 (s, 6H, CH3). IR (KBr, nCO):
1736 cm−1. M.p. 179°C (dec.).

2.4. Preparation of [Al((S)-OC(H)(CH3)-
COOEt)2]+I− (4)

To an ice cold solution (0°C) of iodine (0.52 g, 2.0
mmol) in CH2Cl2 (20 ml), AlMe3 (1.0 ml, 2.0 mmol)
was added slowly and stirred for 30 min. (S)-(− )-ethyl
lactate (0.46 ml, 4.0 mmol) was added and the resulting
mixture was stirred for 3 h. The volatile materials were
removed in vacuo and the residue was extracted with 20
ml of CH2Cl2. Colorless crystalline solids were obtained
24 h after the addition of hexane (40 ml). Yield: 0.48 g
(62%). Anal. Calc. for C10H18O6AlI: C, 30.95; H, 4.67.
Found: C, 30.83; H, 5.19%. 1H-NMR (CDCl3, ppm): d

4.26 (q, 2H, CH, J=6.8 Hz), 4.25 (q, 4H, OCH2CH3,
J=7.0 Hz); 1.42 (d, 6H, CH3, J=6.8 Hz); 1.31 (t, 6H,
OCH2CH3, J=7.0 Hz). IR (KBr, nCO): 1646 cm−1.
M.p. 160°C (dec.).

2.5. Preparation of [Me2Al(m-(R)-pantolactonato)]2 (5)

To an ice cold solution (0°C) of (R)-pantolactone
(0.26 g, 2.0 mmol) in ether (30 ml), an AlMe3 (1.2 ml,
2.0 M in toluene, 2.4 mmol) solution was added slowly.
The mixture was stirred for 2.5 h and then was dried in
vacuo to give a white powder. The residue was ex-
tracted with 30 ml of ether and then concentrated to ca.
20 ml. Colorless crystals were obtained, after cooling to
−20°C overnight. Yield: 0.29 g (79%). Anal. Calc. for
C16H30Al2O6: C, 51.61; H, 8.12. Found: C, 51.23; H,
7.89%. 1H-NMR (CDCl3, ppm): d 4.94 (s, 1H, OCH);
4.15 (s, 2H, OCH2); 1.32, 1.09 (s, 6H, C(CH3)2), −0.82
(s, 6H, AlCH3). 13C-NMR (CDCl3, ppm): d 182.86
(C�O), 79.47 (OCH), 77.44 (OCH2), 42.43 (C(CH3)2),
22.46, 18.46 (C(CH3)2), −8.96 (AlCH3). IR (KBr, nCO):
1757 cm−1.

2.6. Preparation of [Al(EDBP)I(Et2O)] (6)

To an ice cold solution (0°C) of iodine (1.04 g, 4.0
mmol) in toluene (30 ml), an AlMe3 (2.0 ml, 2.0 M in
toluene, 4.0 mmol) solution was added slowly. After 20
min the mixture became colorless, 2,2%-ethylidene-
bis(4,6-di-tert-butylphenol) (1.76 g, 4.0 mmol) in ether
(20 ml) was added. The resulting mixture was stirred
for 2 h and then dried in vacuo. The residue was
extracted with 35 ml of ether and the extraction was
then concentrated to ca. 20 ml and cooled to −20°C to
furnish colorless crystals. Yield: 2.10 g (79%). Anal.
Calc. for C34H54AlIO3: C, 61.44; H, 8.19. Found: C,
60.76; H, 7.44%. 1H-NMR (CDCl3, ppm): d 7.38 (d,
2H, Ph, J=2.4 Hz), 7.14 (d, 2H, Ph, J=2.4 Hz); 4.51
(br, 4H, OCH2CH3); 4.40 (q, 1H, CH(CH3), J=7.2
Hz); 1.68 (d, 3H, CH(CH3), J=7.2 Hz); 1.53 (br, 6H,
OCH2CH3); 1.42 (s, 18H, C(CH3)3); 1.30 (s, 18H,
C(CH3)3). 13C-NMR (CDCl3, ppm): d 150.7, 140.9,
137.6, 133.4, 121.6, 120.9 (Ph); 70.1 (OCH2CH3); 35.3,
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34.5, 31.8, 30.5 (tBu); 30.9 (CH(CH3)); 22.4 (CH(CH3));
13.9 (OCH2CH3).

2.7. Preparation of [(Ph3P�O)Al(EDBP)I] (7)

A solution of triphenylphosphine oxide (0.56 g, 2.0
mmol) in toluene (20 ml) was added to a rapidly
stirring solution of [Al(EDBP)I(Et2O)] (1.33 g, 2.0
mmol) in toluene (30 ml). The reaction mixture was
stirred at room temperature (r.t.) for 2 h, during which
a white precipitate formed. The volatiles were removed
under vacuum and the residue was dissolved in hot
toluene (50 ml). The hot toluene solution was allowed
to cool to −20°C, affording colorless crystalline
product after 24 h. Yield: 1.56 g (90%). Anal. Calc. for
C48H59AlIO3P: C, 66.36; H, 6.84. Found: C, 66.92; H,
6.73%. 1H-NMR (CDCl3, ppm): d 7.79–7.39 (m, 15H,
Ph); 7.38, 7.30, 7.10, 7.02 (d, 4H, Ph, J=2.4 Hz); 4.88,
4.64 (q, 1H, CH(CH3), J=7.2 Hz); 1.68, 1.46 (d, 3H,
CH(CH3), J=7.2 Hz); 1.42, 1.29 (s, 18H, C(CH3)3);
1.19 (s, 18H, C(CH3)3).

2.8. Preparation of [Al(EDBP)(O�PPh3)2]+I− (8)

To a rapidly stirring solution of [Al(EDBP)I(Et2O)]
(1.33 g, 2.0 mmol) in toluene (30 ml), triphenylphos-
phine oxide (1.12 g, 4.0 mmol) in toluene (20 ml) was
added. The reaction mixture was stirred at r.t. for 2 h,
during which a white precipitate formed. The volatile
materials were removed under vacuum and the residue
was extracted with 40 ml of THF and was then concen-
trated to ca. 30 ml and cooled to −20°C to furnish
colorless crystals. Yield: 2.04 g (89%). Anal. Calc. for
C66H74AlIO4P2: C, 69.10; H, 6.50. Found: C, 68.95; H,
6.08%. 1H-NMR (CDCl3, ppm): d 7.79–7.39 (m, 30H,
Ph); 7.21 (d, 2H, Ph, J=2.0 Hz), 7.06 (d, 2H, Ph,
J=2.0 Hz); 4.09 (q, 1H, CH(CH3), J=6.8 Hz); 1.27 (s,
18H, C(CH3)3); 1.18 (s, 18H, C(CH3)3); 0.93 (d, 3H,
CH(CH3), J=6.8 Hz). 13C-NMR (CDCl3, ppm): d

150.5, 140.4, 136.1, 133.1, 120.9, 120.8 (Ph); 135.0,
132.2 (d), 132.1 (d), 129.8 (d), 129.5 (d), 124.4 (d), 123.8
(d) (PPh); 35.0, 34.2, 29.9, 29.7 (tBu); 31.6 (CH(CH3));
21.6 (CH(CH3)).

2.9. Preparation of [Al(EDBP)(HMPA)2]+I− (9)

Hexamethylphosphoramide (1.40 ml, 8.0 mmol) was
added to a rapidly stirring solution of [Al(EDBP)I-
(Et2O)] (1.33 g, 2.0 mmol) in toluene (30 ml). The
reaction mixture was stirred overnight at r.t., during
which a white precipitate formed. The volatile materials
were removed under vacuum to give a white powder.
The residue was dissolved in hot toluene (40 ml). The
hot toluene solution was allowed to cool to 5°C, afford-
ing colorless crystals after 48 h. Yield: 1.51 g (80%).
Anal. Calc. for C42H76AlIN6O4P2: C, 53.39; H, 8.11; N,

8.89. Found: C, 53.45; H, 8.32; N, 8.74%. 1H-NMR
(CDCl3, ppm): d 7.33 (d, 2H, Ph, J=2.4 Hz), 7.05 (d,
2H, Ph, J=2.4 Hz); 4.33 (q, 1H, CH(CH3), J=7.2
Hz); 2.80 (d, 18H, OP[N(CH3)2]3, JH�P=10 Hz), 2.79
(d, 18H, OP[N(CH3)2]3, JH�P=10 Hz), 1.63 (d, 3H,
CH(CH3), J=7.2 Hz); 1.37 (s, 18H, C(CH3)3); 1.28 (s,
18H, C(CH3)3). 13C-NMR (CDCl3, ppm): d 150.8,
140.1, 135.9, 133.2, 121.0, 120.8 (Ph); 36.96, 36.91 (d,
P[N(CH3)2]3, JC�P=18.4 Hz); 35.1, 34.3, 31.7, 29.9
(tBu); 31.1 (CH(CH3)); 22.8 (CH(CH3)).

2.10. X-ray crystallographic studies

Suitable crystals of 2, 5, and 8 were sealed in thin-
walled glass capillaries under a nitrogen atmosphere
and mounted on a Siemens P4 diffractometer. The
crystallographic data were collected using a v–2u scan
mode with Mo–Ka radiation. Cell constants were ob-
tained by least-squares analysis on positions of at least
25 randomly selected reflections in the 2u range of
4–28°. The space group determination was based on a
check of the Laue symmetry and systematic absences,
and was confirmed using the structure solution. The
structure was solved by direct methods using a Siemens
SHELXTL PLUS package [6]. All non-H atoms and hy-
drogen atoms attached on nitrogen were located from
successive Fourier maps. Other H-atoms were refined
using a riding model [7]. Anisotropic thermal parame-
ters were used for all non-H atoms, and fixed isotropic
parameters were used for H atoms. Crystallographic
data of 2, 5 and 8 are listed in Table 1.

3. Results and discussion

3.1. Synthesis and spectroscopic studies of 1–5

The reactions of two molar equivalents of (S)-(− )-1-
phenylethylamine, (R)-(− )-pantolactone (PL�H), or
(S)-(− )-ethyl lactate (EL�H) with Me2AlI (1), gener-
ated in situ from the reaction of Me3Al with one molar
equivalent of I2 in toluene at 0°C, afford cationic alu-
minum complexes [Me2Al((S)-NH2(Ph)C(H)CH3)2]+I−

(2), [(PL)2Al]+I− (3) or [(EL)2Al]+I− (4), respectively
(shown in Scheme 1). However, the reaction of one
molar equivalent of (R)-(− )-pantolactone with Me3Al
yields a neutral pentacoordinated aluminum complex
[(m-PL)AlMe2]2 (5). Compound 5 is readily dissolved in
toluene. However, compounds 2, 3 and 4 are sparing
soluble in warm toluene but readily dissolve in cold
dichloromethane indicating an ionic feature of these
compounds. Despite attempts in vain to obtain the
solid state structure of 3 and 4, the ionic feature of
3 and 4 can be established by IR spectroscopic studies.
A systematic decrease in the carbonyl stretching
frequency (nCO) from the free (R)-pantolactone (1760
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cm−1) to the neutral compound [Me2Al(m-PL)]2 (5)
(1757 cm−1) and to cationic compound 3 (1736 cm−1)
is observed. Similarly, nCO decreases from the free ethyl
lactate (1738 cm−1) to neutral compound [Me2Al(m-
(S)-(− )OC(H)(Me)C(O)OEt)]2 (A) (1687 cm−1) [8]
and to cationic compound 4 (1646 cm−1). This dra-

matic decrease in nCO (21–41 cm−1) from the neutral
compound (A or 5) to the cationic compound (3 or 4)
is consistent with our expectation. There is more elec-
tron density donating from the carbonyl to aluminum
center in cationic aluminum complex than that in neu-
tral complex resulting in the weaken of C�O bond.

Table 1
Crystallographic data of compounds 2, 5, and 8

2 5 8·2THF

C18H30AlIN2O C16H30Al2O6Formula C74H90AlIO6P2

1291.3372.4Formula weight 444.3
Colorless parallelepipedColorless needleCrystal system Colorless parallelepiped

Space group P21/nP212121P212121

13.269(2) 13.823(2)6.888(1)A (A, )
18.068(2)17.782(4)B (A, ) 17.244(2)

19.090(2)C (A, ) 18.763(2) 29.100(3)
b (°) – – 100.22(2)

7152.5(15)4293.2(9)V (A, 3) 2338.2(9)
4Z 84

1.262 1.152Dcalc (Mg m−3) 1.199
0.7107l (Mo–Ka) (A, ) 0.71070.7107
0.5530.159Absorption coefficient (mm−1) 1.414

4.0–45 3.5–453.5–48.02u Range (°)
2u–u2u–uScan type 2u–u

9688Reflections collected 62404205
Observed reflections 6240 (F\4s(F))4791 (F\4s(F))2421 (F\4s(F))

210 433 766No. of refined parameters
4.63 3.98 5.74R a for significant reflections (%)

6.364.30Rw
b for significant reflections (%) 4.36

1.83Goodness-of-fit c 1.181.13

a R= �S(�Fo−Fc�)/�S�Fo��.
b Rw= �S
w(�Fo−Fc�)/�S
w �Fo��; w=1/[s2(F)+0.0006]F2 for 2; w=1/[s2(F)+0.001]F2 for 5 and 8.
c Goodness-of-fit= [Sw(�Fo−Fc�)2/(Nrflns−Nparams)]

1/2.

Scheme 1.
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Scheme 2.

Table 2
Selected bond distances (A, ) and bond angles (°) of 2

Bond lengths
1.971(7)Al�N(1) 1.977(6) Al�N(2)
1.960(9)Al�C(1) 1.958(10) Al�C(2)

Bond angles
N(1)�Al�C(1) 108.8(3)98.4(3)N(1)�Al�N(2)
N(1)�Al�C(2)N(2)�Al�C(1) 108.3(4)105.9(3)

122.6(4)N(2)�Al�C(2) 110.2(4) C(1)�Al�C(2)

aluminum atom. However, two sets of resonances are
observed for compound 7 with a relative ratio of 3:1 in-
dicating the presence of two geometric isomers for com-
pound 7 as shown in Scheme 2. It is believed that the
formation of 8 from 7 involves initial generation of the
3-coordinate Al derivative [(EDBP)Al(OPPh3)]+ (B),
which is rapidly trapped by OPPh3.

3.3. Molecular structure of 2, 5 and 8

The ionic feature of 2 is further verified by the X-ray
crystal structure determination and the ORTEP of
[Me2Al((S)�NH2(Ph)C(H)CH3)2]+ as shown in Fig. 1.
Selected bond distances (A, ) and bond angles (°) of 2 are
listed in Table 2. The aluminum center is tetrahedrally
coordinated by two amine molecules and two methyl
groups in which the bond distances of Al�N bond are
found to be similar with Al�N(1) 1.977(7) and Al�N(2)
1.971(7) A, , respectively. It is worth noting the polymeric
feature of compound 2 in solid state in which
[Me2Al((S)�NH2(Ph)C(H)CH3)2]+ cations are con-
nected through the N�H···I hydrogen bonds with iodide
counterions to form a polymeric aggregate as shown in
Fig. 2. Iodide anion is bonded to four hydrogen atoms
from three independent amine molecules with the
(N)H�I distances ranging from 2.773 to 3.242 A, and the
correspondent I�N distances ranging from 3.542 to
3.790 A, as shown in Table 3. The N�H···I hydrogen
bond distances and angles lie in the range generally ex-
pected for N�H···I hydrogen bonding [10]. Strong hy-
drogen bonds in the formation of supramolecular

Though previous work in this area has shown that a va-
riety of Lewis bases such as amines, crown ethers,
TMEDA, THF, acac, etc. [9] has led to the formation of
aluminum cations; to our knowledge, there has been no
example available on aluminum cation stabilized with
lactone or lactate as coordinating ligand. Thus, com-
pounds 3 and 4 stand as the first example of aluminum
cations stabilized by lactate or lactonate ligand.

3.2. Synthesis and spectroscopic studies of 6–9

[Al(EDBP)I(Et2O)] (6) was synthesized in 79% yield
from the reaction of 2,2%-ethylidene-bis(4,6-di-tert-
butylphenol) (EDBP�H2) with Me2AlI in diethyl ether,
followed by the recrystallization from diethyl ether.
Treatment of 6 with one molar equivalent of Ph3P�O,
yielded a neutral complex [Al(EDBP)I(OPPh3)] (7). The
cationic aluminum derivative [Al(EDBP)(OPPh3)2]+I−

(8) is prepared either from the reaction of 7 with one
molar equivalent of Ph3P�O or from the reaction of 6
with two molar equivalents of Ph3P�O. In addition, the
reaction of 6 with excess of HMPA in toluene yields
cationic complex [Al(EDBP)(HMPA)2]+I− (9). The 1H-
NMR data of 6, 8 and 9 reveal only one set of reso-
nances for tert-butyl groups of phenyl ring in EDBP2−

ligand. Similarly, one set of two resonances for the two
hydrogens on both aryl moieties was observed. These
observations suggest that these two aryl moieties are
chemically equivalent and that requires a s-plane of
symmetry pass through the C-7 methine carbon and the

Fig. 1. The ORTEP of [Me2Al((S)�NH2PhCH(CH3))2]+ with the atom labeling scheme.
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structures have played important role among the or-
ganic and inorganic compounds and have been widely
investigated [11].

Suitable crystals for structure determination of 5 are
obtained from ether solution at −18°C and its ORTEP

is shown in Fig. 3. Selected bond distances (A, ) and
bond angles (°) of 5 are listed in Table 4. The structure
of 5 shows a dimeric feature which contains 5.5.4.5.5-
fused rings with an Al2O2 core and a lactonate group
bonded to Al through the C�O. The coordination

Table 4
Selected bond distances (A, ) and bond angles (°) of 5

Bond lengths
Al(1)�O(1) 1.865(2) Al(1)�O(2) 2.315(3)
Al(1)�C(1) 1.953(4) Al(1)�C(2) 1.956(4)

O(1)�Al(2) 1.933(2)1.934(2)Al(1)�O(4)
Al(2)�O(5)1.873(2)Al(2)�O(4) 2.355(3)

Al(2)�C(21) 1.957(4)Al(2)�C(22)1.947(4)

Bond angles
78.3(1) O(1)�Al(1)�C(1) 116.9(2)O(1)�Al(1)�O(2)
87.9(2)O(2)�Al(1)�C(1) O(1)�Al(1)�C(2) 118.1(2)

C(1)�Al(1)�C(2) 122.7(2)O(2)�Al(1)�C(2) 88.3(1)
116.7(1)O(2)�Al(1)�Al(2) C(1)�Al(1)�Al(2) 124.5(2)

C(2)�Al(1)�Al(2) 107.9(1) O(1)�Al(1)�O(4) 76.8(1)
O(2)�Al(1)�O(4) 106.0(2)C(1)�Al(1)�O(4)154.9(1)

O(1)�Al(2)�O(4) 76.7(1)100.7(1)C(2)�Al(1)�O(4)
115.7(1)Al(1)�Al(2)�O(5) O(1)�Al(2)�O(5) 153.6(1)
77.1(1)O(4)�Al(2)�O(5) Al(1)�Al(2)�C(21) 125.4(1)

O(4)�Al(2)�C(21) 117.2(2)O(1)�Al(2)�C(21) 107.3(1)
87.6(2)O(5)�Al(2)�C(21) Al(1)�Al(2)�C(22) 108.2(1)

O(1)�Al(2)�C(22) 100.8(1) O(4)�Al(2)�C(22) 118.6(2)
121.6(2)C(21)�Al(2)�C(22)89.0(1)O(5)�Al(2)�C(22)

Fig. 2. Structure of 2 in the solid state demonstrates polymeric feature
through N�H···I interactions.

polyhedron of the central five-coordinated aluminum
atom is somewhat distorted from perfect trigonal
bipyramidal geometry with two carbons, and one of
two bridging oxygen atoms siting on equatorial posi-
tions. The aluminum atom, two ligating carbon atoms,
and one of two bridging oxygen atoms are almost
coplanar. The two equatorial Al�C bonds average 1.953
A, that are similar to normal Al�C bonds in five-coordi-
nated complexes. However, the average Al�O distance
for the dative C�O�Al bond in 5 is 2.335(4) A, which
is 0.36 A, longer than its lactate congener [Me2Al(m-(S)-
(− )OC(H)(Me)C(O)OEt)]2 [8] and is about 0.62 A,
longer than the longest dative bond from an oxygen to
a four-coordinated aluminum for an ester group [12].
The longer Al�O distance in 5 than that in [Me2Al(m-
(S)-(− )OC(H)(Me)C(O)OEt)]2 is resulting from the
ring strain of pantolactone group.

The cationic formulation was confirmed by the X-ray
determination of 8 and the molecular structure of the
cation is shown in Fig. 4. Selected bond distances (A, )
and bond angles (°) of 8 are listed in Table 5. The
cation consists of a central four-coordinate aluminum
atom in a distorted tetrahedral geometry where alu-
minum is bonded to two oxygens of aryloxides and two
oxygens of phosphine oxides with Al�O(1)=1.693 (4),
Al�O(2)=1.721 (4), Al�O(3)=1.750 (4), Al�O(4)=
1.743 (4) A, . The short average Al�O bond length of
1.747 A, (phosphine oxide), which is only slightly longer
than that of Al�O 1.707 A, (aryl oxide), and the linear-
ity Al�O�P angles of 157.9(3) and 171.1(3)°, respec-
tively, indicate the existence of a strong interaction
between Al and OPPh3. It is interesting to note that the
Al�O(4) distance of 1.743(4) A, is similar to the Al�O(3)
distance of 1.750(4) A, indicating that no steric hin-

Table 3
Selected hydrogen bond lengths (A, ) and angles (°) in 2·H2O

N�H···I SymmetryN···I N�H�IH···I

3.242 3.790 156.1 x−1, y, zN(1)�H(1a)···I
2.981 3.691N(1)�H(1b)···I 165.1 x, y, z

159.13.5862.859N(2)�H(2a)···I −1/2+x, 1/2−y, 2−z
2.773 3.542 158.0N(2)�H(2b)···I x, y, z

Fig. 3. Molecular structure and atom numbering scheme for [(m-
PL)AlMe2]2 (5).
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Fig. 4. Molecular structure and atom numbering scheme for
[(EDBP)Al(OPPh3)2]+.

135271 for compound 2, 135272 for compound 5, and
135273 for compound 8.
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Table 5
Selected bond distances (A, ) and bond angles (°) of 8

Bond lengths
1.693(4)Al�O(1) Al�O(2) 1.721(4)

Al�O(3) Al�O(4)1.750(4) 1.743(4)
1.527(4)P(1)�O(3) 1.518(4)P(2)�O(4)

Bond angles
117.8(2)O(1)�Al�O(2) O(1)�Al�O(3) 107.2(2)
109.7(2)O(2)�Al�O(3) O(1)�Al�O(4) 108.9(2)

102.7(2)O(2)�Al�O(4) 109.4(2) O(3)�Al�O(4)
Al�O(3)�P(1)109.4(3) 157.9(3)O(3)�P(1)�C(31)

Al�O(4)�P(2) 171.1(3)

drance difference for the phosphine oxide ligand trans/
cis to the C(7) hydrogen.

In conclusion, cationic aluminum complexes were
synthesized easily from the reactions of Lewis bases
with Me2AlI. The first characterized examples of alu-
minum cations stabilized by lactate or lactonate ligands
are reported. The formation of supramolecular struc-
ture via strong N�H···I hydrogen bonds has been ob-
served for compound 2.

4. Supplementary material

The crystal data have been deposited with the Cam-
bridge Crystallographic Data Centre with CCDC Nos.


